skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maniktala, Mehak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While Reinforcement learning (RL), especially Deep RL (DRL), has shown outstanding performance in video games, little evidence has shown that DRL can be successfully applied to human-centric tasks where the ultimate RL goal is to make the \textit{human-agent interactions} productive and fruitful. In real-life, complex, human-centric tasks, such as education and healthcare, data can be noisy and limited. Batch RL is designed for handling such situations where data is \textit{limited yet noisy}, and where \textit{building simulations is challenging}. In two consecutive empirical studies, we investigated Batch DRL for pedagogical policy induction, to choose student learning activities in an Intelligent Tutoring System. In Fall 2018 (F18), we compared the Batch DRL policy to an Expert policy, but found no significant difference between the DRL and Expert policies. In Spring 2019 (S19), we augmented the Batch DRL-induced policy with \textit{a simple act of explanation} by showing a message such as \textit{"The AI agent thinks you should view this problem as a Worked Example to learn how some new rules work."}. We compared this policy against two conditions, the Expert policy, and a student decision making policy. Our results show that 1) the Batch DRL policy with explanations significantly improved student learning performance more than the Expert policy; and 2) no significant differences were found between the Expert policy and student decision making. Overall, our results suggest that \textit{pairing simple explanations with the Batch DRL policy} can be an important and effective technique for applying RL to real-life, human-centric tasks. 
    more » « less